SOLUTIONS /125

4226. Proposed by Daniel Sitaru.
Prove that if 0 < a < b then:

(/ab 1T+x2dm)2 > (b—a)2+ln2(g).

We received nine submissions, eight of which are correct and the other is incorrect.
We present a composite of virtually the same solutions by Arkady Alt; Michel
Bataille; M. Bello, M. Benito, 0. Ciaurri, E. Ferndndez, and L. Roncal (jointly);
and Digby Smith.
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the integral form of the Cauchy-Schwarz Inequality, we have
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But equality cannot hold in (2) as f is not a constant on [a,b]. Hence, from (1)
and (2) the result follows.

4227 . Proposed by Dan Marinescu and Leonard Giugiuc.

Let P be a point in the interior of an equilateral triangle ABC whose sides have
length 1, and let R’ and ' be the circumradius and inradius of the triangle whose
sides are congruent to PA, PB and PC (which exists by Pompeiu’s theorem).
Prove that

3R >1>6r.

Among the four submissions, three were complete and correct; in the fourth, Michel
Bataille simply provided a reference where the proof can be found: Proposition 7
in Joszef Sandor’s “On the Geometry of Equilateral Triangles”, Forum Geometri-
corum, vol. 5 (2005) 107-117. Here we present the solution by Roy Barbara.
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